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Non-conformal renormalised stress tensors in Robertson- 
Walker space-times 

T S Bunch? and P C W Davies 
Department of Mathematics, King’s College London, Strand, WC2R 2LS, UK 

Received 26 September 1977, in final form 9 January 1978 

Abstract. We consider a number of explicitly soluble models of a massless, non- 
conformally-coupled scalar quantum field propagating in certain special Robertson- 
Walker background space-times. 

Regularisation is effected using covariant point-splitting, and renormalised stress 
tensors are constructed according to the ansatz, described in our companion paper, based 
on the DeWitt-Schwinger expansion. The results are all finite, conserved and free of 
regularisation ambiguities. From these special cases we are able to deduce a great deal 
about the structure of renormalised stress tensors in more general models in which 
computation-approximation techniques will be necessary. 

1. Introduction 

In a companion paper (Bunch and Davies 1978, hereafter referred to as 11) we treated 
a massive scalar field propagating in de Sitter space, and adapted our earlier work with 
Christensen and Fulling (Davies et a1 1977, hereafter referred to as I) on point- 
splitting regularisation to this non-conformal case. Following suggestions by Chris- 
tensen and Fulling (1977) we employed a renormalisation ansatz based on the 
DeWitt-Schwinger inverse mass expansion, and obtained a renormalised stress tensor 
in agreement with other authors (Dowker and Critchley 1976) who use dimensional 
regularisation. 

In more general space-times, it is hard to find mode solutions of the massive wave 
equation, although there are a number of cases in which the massless, minimally 
coupled scalar wave equation possesses tractable solutions. As this situation is con- 
formally non-trivial (the minimally coupled wave equation in four dimensions is not 
invariant under conformal transformations) interesting features, such as logarithmic 
terms, which were present in the massive de Sitter calculation, survive in these other 
cases. However, because we are dealing with a massless field, some subtle differences 
occur. By considering some explicitly soluble special cases, considerable light is cast 
on the structure of renormalised stress tensors in more general cases. All the cases 
treated here involve a Robertson-Walker background space-time, the conformal 
flatness of which, whilst of no direct assistance to the solution of the non-conformal 
wave equation under investigation, nevertheless saves a lot of labour, because we can 
use the expansions, expressions and experience of our earlier conformal treatment (I). 
It turns out that even in the non-conformal case, the point-split expressions all reduce 
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to functions of the product of null separations Au AV,  and the stress tensors all have 
the form of the conformal tensor found in I, plus non-conformal ‘correction terms’. As 
the conformal symmetry breaking is associated physically with particle creation, the 
correction terms can, loosely speaking, be thought as representing the contribution to 
the stress tensor of this particle creation. 

Another interesting feature to emerge is that the correction terms do not require 
any further renormalisation over and above the conformal term, except for logarith- 
mic terms. However, the logarithmic terms can be deduced by direct inspection of the 
logarithmically divergent pieces of Christensen’s (1 976) DeWitt-Schwinger expansion 
for a general space-time (these divergent terms are independent of the quantum state) 
which turn out to have completely unambiguous geometrical coefficients. This means 
that it ought to be possible to write out the non-conformal scalar stress tensor for a 
general conformally flat space-time as a known (renormalised) geometrical tensor, 
plus a (generally) non-geometrical, non-local correction term, arranged as a finite 
additional mode sum, to be evaluated in general by some computation-approximation 
technique. 

In 0 2, as a preliminary, we give a two-dimensional concrete calculation, in which a 
massless scalar field 4, with an additional [R term in the wave equation breaking the 
conformal symmetry, propagates in a certain Robertson-Walker background space- 
time. The two-point function G(x”, x’) = ( + ( x ” ) ~ ( x ’ ) ) ,  evaluated as an expectation 
value in a particular natural vacuum state, is displayed explicitly and differentiated to 
yield an unrenormalised stress tensor. Renormalisation is then effected by invoking 
our ansafz explained in detail in 11. The final renormalised stress tensor is (automa- 
tically) finite, conserved, free of regularisation ambiguities and, by accident, purely 
local and geometrical in form. 

In 0 3, the treatment is extended to two special four-dimensional Robertson- 
Walker space-times, although for convenience we choose to renormalise G first, 
rather than work with the full stress tensor. Once again, the results are accidently 
local (i.e., pseudo-local in the terminology of I), although in one case non-geometrical. 

Section 4 is a discussion of the way in which the results of these special examples 
may be used to deduce the structure of renormalised stress tensors in more general 
situations. 

2. Two-dimensional case 

As a first illustration, consider a massless scalar field 4 which satisfies the wave 
equation 

in two-dimensional space-time, where [ is a parameter and R is the curvature scalar. 
The field is conformally coupled if 6 = 0, and this case has been treated for a general 
background space-time by Davies and Fulling (1977) for the scalar field and Davies 
and Unruh (1977) for the neutrino field. Here we consider the case of a general 5. 
Under the circumstances 6 f 0, particle production will occur if the space-time is not 
static. We treat here the special case of a Robertson-Walker space-time, so that the 
scalar curvature R is a function of time only. 

(O+[R)4 = 0 (2.1) 

It is convenient to work with the conformally flat form of the metric 

ds2 = C(v)(dv2 - dZ2) ( 2 . 2 )  
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for which the wave equation (2.1) may be solved in terms of mode solutions of the 
form $k(q)eikz, where & ( q )  satisfies the equation 

Exact solutions of equation (2.3) are hard to find, but if the function C ( q )  is 
chosen to be of a special form, it is possible to obtain tractable modes (Lk. One 
example which is immediately suggested by the form of equation (2.3) is 

CRC = p 2  = constant (2.4) 

which reduces (2.3) to the form of the massive scalar wave equation in flat space-time 
with the constant p playing the role of the mass. Using the definition of the scalar 
curvature in two-dimensional space-time 

where U = q - z ,  v = q + z are standard retarded and advanced null coordinates 
respectively, and C, = C / d u  etc, we obtain from (2.4) the conformal scale factor for 
this particular Robertson-Walker universe 

C(77)xexp [AT +(P2/2OT21 (2.6) 
where A is a constant. Choosing p = 0 (hence R = 0) yields the two-dimensional 
Milne universe if A f 0. This is just a portion of Minkowski space in disguise. 

The solution of equation (2.3) with the restriction (2.4) is immediate 

(2.7) w 2 = k 2 + p 2  
$k (7 )a e+‘, 

whence the normalised positive frequency mode solutions of (2.1) are simply 

(2.8) (4.irw )- 1/2ei(kz -UT) 

First we calculate the two-point function 

G (x”, x ’) = (4  (x ”)4 (x ’)) (2.9) 
where x denotes a space-time point (q, z )  and ( ) refers to the expectation value in the 
vacuum state associated with the modes (2.8). It is understood throughout that 
symmetrisation over x”, x ’  is to be performed if necessary. G(x”, x’) may be obtained 
in the usual way as a mode sum 

G(x”, x‘) = ( 4 ~ ) - ’  
X 

dk (2.10) -1 i k A z - i w A n  lxw e 

where A q  = 77”-q’, Az = 2”-z’.  The integral in (2.10) may be performed in terms of 
a MacDonald function 

1 
G(x”, x’) = - Ko[ip(Au A v ) ” ~ ]  (2.11) 2T 

with Au = A q  - Az, AV = A q  + Az. 

powers of the argument (real part understood) 

2 ~ G ( x “ , x ’ ) = - y - ~ l n ( ! P ~  Au Av)-ap2Au Av[-y-iln(ap2Au A v ) + l ] + .  . . 

We are only interested in the behaviour of G as Au, AV + 0, so we expand (2.11) in 

(2.12) 
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from which it may be seen that G diverges logarithmically as x " +  x ' .  This is the usual 
ultra-violet divergence. Also note that G diverges logarithmically at the lower limit as 
p + 0. This is an infra-red divergence. It is interesting that the infra-red divergence is 
present in this model only when the coupling of the scalar field is conformal. 

Next, we calculate the stress tensor expectation value by differentiation of G 
according to the formal relation (Christensen 1976) 

U' (T,,(x)) = lim [&1-25)(G;,,,,, + G;, , ,u,)-5(G;, ,~v~,  + G;,,,,)+(25-t)g,,G;,,,  
X".X'+X 

+ &,,(G;,~~""+ G;,,"')-$g,,m'G] (2.13) 

where the primes on the indices indicate at which point the differentiation is to be 
performed. To give (2.13) a covariant meaning, one chooses x to lie on the midpoint 
of a geodesic joining x '  and x " ,  at a proper distance E from each. Then in order to 
perform the differentiation symbolised in (2.13) it is necessary to parallel transport the 
derivatives from x' and x"  back to x .  This differentiation procedure, while compli- 
cated and laborious, is now routine in these regularisation calculations, and can 
readily be performed using the contents of the appendices in I and 11. 

First it is necessary to rewrite (2.12) in terms of E and tu,  the tangent vector to the 
geodesic at x ,  by expanding Au  and AV in a power series in E (see Davies and Fulling 
1977): 

G(x", x ' ) =  - (2r)- '{( l  - ~ ~ 2 : 5 R ) [ y + ~ l n ( ~ ' 2 5 R ) ] + ~ ' Z ( A , ~ t " t ~ 2 - ' - ~ R ) }  (2.14) 

where Z = tutu = *1 and AaP is a tensor with null components 

A,, = A,, = A(-D + 20') 
A,, = A,, = -aD (2.15) 

and D = C/C, the dot denoting differentiation with respect to U or v (a/& = a/av = 
t a la7  when C = C(7)) .  

The differentiation is now performed using equations (D.7a, b) of I and equations 
(C.1) and (C.5) of 11. After some work we find, using (2.13) and (2.14) 

(T, , (x))  = (ST)-'[-(&')-'+ ( : - [ )R](g, ,  -2Z-'t,t,) 

where the traceless tensor e,, has components 

B,, = (24r)-'(C-'CU, -$C-'Cc',) 

e,, = p ~ r ) - ' ( c - ' c , ,  -$c-'cf) (2.17) 

e,, = e,, = 0. 

Comparison of (2.16) with equation (2.3) of Davies and Fulling (1977) shows that 
the answer is identical (to within sign conventions), when 6 = 0. Notice that there is no 
logarithmic divergence in (T,,) in spite of the fact that a term of the form E' In E* 

appears in G :  exact cancellation occurs between the different terms in (2.13) which go 
to make up ( T,,). 

To obtain the renormalised stress tensor from (2.16) it is necessary to subtract the 
terms of the DeWitt-Schwinger expansion up to adiabatic order R, which are (see I1 
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and Christensen and Fulling 1977), in the massless limit 

- (87r .~~E) - ' (g , , ,  - 22-'r,r,,)- (47rE)-'(k- [)RrClru. (2.1s) 

Alternatively, G could have been renormalised by such a subtraction (see equation 
(4.5) of 11), and then differentiated to obtain the renormalised stress tensor (T,,),,, 
directly. Either way we find 

(2.19) 

A&,, =(47r)- ' [R-'R;, , -R-2R, ,R; ,  -gPY(R-'OR -R-2R'uR;,)] (2.20) 

Aum = (4~)-'[ R-2R '"R - R- 'OR] .  (2.21) 

The tensor A,,, represents the conformal-breaking contribution to the stress 
tensor. Physically, the presence of this term is associated with particle production by 
the expanding space. The trace of the renormalised stress tensor is 

1 1  6 -2 ;U g f i ~ ~ , ~ ) ~ , ~  = s?T (;- 6) R +-(R R R ; ,  - R -'OR). 
* 47r 

(2.22) 

The first term on the right-hand side of (2.22) can be traced back to the last term in 
equation (2.13), which gives a contribution to the renormalised stress tensor even in 
the massless limit, m + 0, because of the presence of an m-* term in the DeWitt- 
Schwinger expansion for G (see Christensen and Fulling 1977). Such a contribution is 
generally known as 'anomalous' because it breaks the conformal symmetry present 
in the operator T,". The last term in equation (2.22) is not anomalous: it is the 
renormalised expectation value of the trace of the massless stress tensor operator 
Tu, = .fiiq52. 

We know from Davies and Fulling (1977), and expect on general grounds, that the 
conformal stress tensor ((T,,,) with 6 = 0) is conserved. Hence both conformal and 
non-conformal terms are separately conserved: 

1 

(2.23) 

(2.24) 

as may be verified by direct computation. 

3. Four-dimensional cases 

In four dimensions, a number of special conformally non-trivial cases may be solved 
exactly. We consider here two examples of minimul coupling for a massless scalar 
field propagating in a conformally flat (in fact Robertson-Walker) background space- 
time. 

The wave equation is 

Od=O (3.1) 
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and the metric is 

ds2=C(t))(dq2-dX.dX) (3.2) 

where C(T)= a2(t) ,  a being the usual Robertson-Walker scale factor, will take a 
specific functional form to enable (3.1) to be solved. Mode solutions of the form 

' x $ k ( v )  with k = /kl may be chosen, where $!fk satisfies eik 

; i ; ( C % ) + C k 2 $ k = O  d d h  

which is the analogue of equation (2.3) with 6 = 0. 
Equation (3.3) may be rearranged as follows 

(3.3) 

Consider the special case 
a ( t ) = ( l - P  2 t 2 ) 1/2 

which corresponds to R C  = constant. As in the two-dimensional example treated in 
the previous section, equation (3.4) resembles the massive wave equation in flat 
space-time for the field C1/'$k 

d2 
dT 
y( C1"$k) + ( k 2  + p 2 ) c ' / 2 $ k  = 0 (3.7) 

with the constant ,B once again playing the role of the mass. Because of this formal 
similarity, we can write down mode solutions of (3.1) immediately for this special case, 
in the form of familiar exponentials 

*k a e  9 w = ( k 2  + p 2 ) l I 2 .  (3.8) ik. x -iw? 

Similarly the two-point function G(x", XI)= (~(x")c$(x')) constructed as an expec- 
tation value in the vacuum state associated with the modes (3.8), is already known 
formally: 

1/2  1 /2 
G(x", x ' )=  - c- (77")c- (17') ipKl[ip(Au ,,)1/2] 

45r2 Au AV (3.9) 

where K 1  is a MacDonald function and we use retarded and advanced null coordinates 
U = 7 - z, U = 77 + z, choosing the point separation between XI' and x '  to lie in the 7 - z 
plane, without loss of generality (the space is isotropic). The factors in (3.9) 
come from the fact that it is C1"t+bk rather than & which appears in equation (3.7). 

It is interesting to note that the limit p + 0 corresponds to the universe a ( t ) a  t1I2 
(radiation-filled Friedmann model). In this case, ipKl(ipJAu AV)+ 1 and G reduces 
to the conformal two-point function found in I. This universe has the property R = 0, 
and in that case the minimally- and conformally-coupled wave equations coincide. (In 
all cases, we find that G is a sum of the conformal part plus a conformal symmetry- 
breaking piece. The latter must always vanish when R = m = 0.) 

The now familiar procedure of expanding the special function in G(x", x') and then 
expanding the Au, AV, ql ' ,  q 1  factors in powers of E and tu corresponding to geodesics 
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through the point x of interest, is carried out. We omit the intermediate details, as 
these follow along the lines of I and 11. The result is (real part understood) 

1 
G(x", x ' )=  - 

+- E 2 X  (6R,p,,statPtYtsZ-2- R,,ptatPX-' - 14R,,R,,t a P v S  t t t E-' 
2 8 8 0 ~  

+G [ y + i l n  (F)] (4RR,,tatPX-l-2R,,ptatP~-' 
5 7 6 ~  

+ 2 0 R  - R2)+ O(e4) (3.10) 

which may be written 

G(x", x')  = Gconformal + ( 5 7 6 ~ ' ) - '  y +- In - [ ; ("31 
X [-12R + ~ ~ Z ( 4 R R , p t " t ~ X - ' - 2 R ; , p t ~ t ~ Z - ' +  2 0 R  -R2)]  

R Re'Z 
9 6 ~  2 8 8 ~  
+y-- [R ,,,tatP - E R ]  + O(e4) (3.11) 

where Gconformal is the expression for (4')  given for the conformally-coupled general 
Robertson-Walker case in I. 

Equation (3.11) has a number of interesting features. Firstly, it is completely 
geometrical in the sense that all terms are functions of the Ricci tensor Rap, or R and 
its derivatives. (We include the logarithmic term in this definition of geometrical.) 
This feature turns out to be an accident of the particular choice (3.5) or (3.6) (see the 
discussion in § 4) .  Secondly, the structure of (3.11) is that of a conformal part plus a 
symmetry-breaking correction term, a feature which seems to be quite general, at 
least for conformally flat space-times. Because there is no distinction between con- 
formal and minimal coupling if R = 0, the correction term vanishes when R = 0, as will 
be seen on inspection of (3.11). Thirdly, all the correction terms will lead to terms in 
(Tfiv)  which are independent of tu (this is always true of terms of the type A,,tatP + B, 
for some tensor A,, and scalar B) .  Consequently, apart from easily-handled 
logarithmic terms, there is no need to carry out further regularisation of the non- 
conformal stress tensor once the conformal tensor has been regularised. The cor- 
rection terms, to within a logarithmic term, are finite and unambiguous, another 
feature which seems to be quite general. As a check on the correctness of (3.10) we 
have verified by direct computation that it is a solution of the wave equation (3.1). 

Renormalisation of (3.10) is now effected by subtracting the DeWitt-Schwinger 
terms up to adiabatic order R 2  (see 11, equation (4.4)) to yield 

G,,, =(2880~')- '{2OR-m-'(R,pR"~-60R + T R 2 ) - 3 0 R  In(kRm-') 

+E'X[R,~R~' + 6 0 R  +YR2-(R;,p +2RaPR,p +yRR,p)tatPE-' 

+(10RR,~tatPZ-1-5R,,,JtsXC-' + 5 0 R  -ZR2) In(~Rm-2)]}+O(m2). 

(3.12) 
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This quantity may now be differentiated to obtain (T,v),en. This need not be done 
directly, because the result for a general expression has already been given in the 
appendixes of I and 11. Substituting (3.11) into those expressions gives the answer 

-12RaPRapg,, - 64RR,, + 63R2g,,), (3.13) 

where the conserved tensor “’HWy is given by 
2 “’H,, = 2R ;,, - 20Rg,, + 2(RR,, -aR g,,,). 

In arriving at equation (3.13) we have taken the massless limit m + 0 after renor- 
malisation, thus avoiding an infra-red divergence. The quantity is an arbitrary 
length (or inverse mass) scale which must be introduced because the logarithmic term 
(”H,, In(bRm-2) which arises from equation (3.12) may be arbitrarily decomposed as 
follows 

(3.14) 

Now in a full gravitational dynamical theory, there would be a term (‘’H,, on the 
left-hand side of the gravitational field equations which arises from the presence of an 
R 2  term in the generalised gravitational action (see I, 9 3). The final term of (3.14) is 
proportional to (”H,,,, so it may be taken over to the left-hand side of the field 
equations and absorbed in the renormalisation of the coupling constant of this term. 
The other term on the right of equation (3.14) cannot be so absorbed, and indeed, its 
presence in (T,,),,, is essential to the conservation of that quantity. An arbitrary 
length scale also arises in dimensional regularisation, where it has been referred to as 
the renormalisation point. 

‘”H,,, ln(iRm-’) = “’H,,, In RP-’ +(’)H,, 1n(iF2m2). 

Equation (3.13) may be rearranged as follows: 

1 
1 3 8 2 4 ~ ’  

+ (-32R;,, + 560Rg,,- 8RR,, + 1 1R2g,,) (3.15) 

where ( T,u)conformal was found in I to be 

with (3)H,y = -RaBRa,pY +&R2g,,. Note that both (T,u)con~ormal and the non-con- 
formal correction terms are separately conserved, as in the two-dimensional case, a 
property which may be verified by direct differentiation of (3.15) using (3.6). The 
correction terms manifestly vanish for R = 0, as expected. 

Taking the trace of (3.13) yields 

1 
1 9 2 ~ ’  

(OR) In R + [246OR -6RaBRaB+(47-901np2)R2] .  
1 7 2 8 0 ~ ’  gF”( Tpv)ren  = - 

(3.16) 
The operator T,,, has the trace (for 6 = 0) 

Tu, = -4’“4;“ - 2m24’. (3.17) 
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The first term remains even when m = 0. It contributes the term 

1 1 eR In +17280rr2 [ 2 7 0 0 R  - 10RaPR,P + ( y - 9 0  In p2)RZ]  (3.18) 

to the renormalised trace (3.14).  The remainder of the trace 

(144O.rr2)-' (RaBRaP - 6 U R  + Y R 2 )  (3.19) 

is 'anomalous'. It arises because G,,, as given by equation (3.12) contains a term 
proportional to m-' which combines with the 2mZ in (3.17) to give (3.19).  Thus, the 
mass-dependent part of the stress tensor contributes a finite trace term to the renor- 
malized stress tensor even in the limit m + 0. This is the famous conformal anomaly 
(equal to (87rZ)-'(1 - 3 [ ) a z ( [ )  in the notation of Christensen 1976). 

We come now to the second example for which an exact solution of ( 3 . 1 )  exists: 

a(t)=c+tC 
Z c / ( l - c )  Z c / ( l - c )  (U, c constants) (3.20) 

( 1  - c )  77 c(77) = a 2 / ( 1 - C )  

which has been discussed by Ford and Parker (1977) in connection with infra-red 
divergences. For convenience we use their notation. One has mode solutions of the 
form 

( 2 ~ ) - ' / ' 4 ~ ( 7 7 )  eik.x (3.21) 

where 

(3.22) 

H(') and H(') are Hankel functions, k = Ik/ and 

b = ( l - ~ ) / ( l - 3 ~ )  (3.23) 

(3.24) 

(3 .25)  

The coefficients c1 and cz are complex numbers satisfying the Wronskian condition 

~ C Z ~ * - -  lc112 = .rr/(46). (3.26) 

We study the vacuum state defined by c1 = 0, so that in the limit c + O(v + t )  we 
recover the standard vacuum state of Minkowski space associated with the modes 
k - l l 2  exp (ik . x - ikt). 

The two-point function 

may be evaluated by first performing the angular integration to yield an integral of the 
form 

k sin k Ix" - x'lH"' (kq")H(2)* (k77')dk (3.28) 

which may be expressed in terms of an associated Legendre function, or alternatively 
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a hypergeometric function F. The result is, after some work 

(3.29) 

where once again we have chosen Ix"--x'I = Az, without loss of generality. The scalar 
curvature R is here given by 

R = 6 ~ ( 2 ~  - l ) [ ~ ( l -  c ) T ] - ~ / ( ~ - ~ ) .  (3.30) 

Curiously, the result (3.29) is closely similar to that for de Sitter space (see 11, 
equation (3.11)) although the index U has quite a different meaning in that case. 
However, we may still use the expansion given in I1 for the hypergeometric function to 
obtain, after symmetrisation over x"  and x '  

c - l / 2  (77v)c-1/2 ( 7 7 1 )  

G(x", x ' )  = - 47r'AuAv 

(i- U*)(:- u')Au AV Au A V  

+* - + U  +*  --U +2y--  + . . .  (; ) (; ) ;I (3.31) 

where t,b here denotes the 4 function (Abramowitz and Stegun 1965). 
Using the relations 

(3.32) $- y 2  = -&C 2 2  77 

(3.33) 

and expanding Au, AV, q, etc in powers of E and tu, one obtains, after some tedious 
manipulation (real part understood) 

c - 1 / 2  (771!)c-l/2 (77f) 
G(x", x)= - 

47' Au  AV 

1 
5 7 6 ~ ~  

+- [-12R +E~IS(~RR,,~"~~IS-'-~R;,,~"~~IS-'+~~R -R2)] 

(3.34) 

Comparison of (3.34) with (3.10) and (3.11) shows that the result here is identical 
with the former case except for (i) the i,h terms (ii) the final q-' term in (3.34). Both 
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these terms are non-geometrical, although they are still pseudo-local in the 
terminology of I. Thus, the geometrical part of G is the same in both cases. 

The renormalised stress tensor is found to be 

(Tfi,,)ren= equation (3.13)+II,, (3.35) 

where II,, is a non-geometrical tensor: 

(3.36) 

(recall that v depends on the geometry through (3.32)). Once again the answer is of 
the form ( T,,)conrormal + (correction terms which vanish when R = 0). By direct 
differentiation of (3.35) it can be established that both the conformal and non- 
conformal pieces of (3.36) are separately conserved, the former in any Robertson- 
Walker space-time, the latter when condition (3.20) is used. (Note that with the 
metric (3.20), equation (3.13) does not give a conserved tensor; hence the need for 
L.) 

4. Discussion and generalisation 

Although we have restricted the treatment to soluble models, some general features 
emerge when the structure of the regularisation and renormalisation procedure is 
analysed carefully. 

First consider the two-dimensional case. The divergence in G is logarithmic, and 
in the absence of a mass the only dimensionless geometrical combination which can 
appear (the divergent terms must be geometrical) is In E'R = In €'+in R. The first 
term on the right of this decomposition gives rise to the usual quadratic divergence in 
( T,,), but the second term, when differentiated, produces the contribution (A,,. Thus, 
in the conformal case ( = O ,  the In R term is irrelevant. In addition, the conformal 
anomaly term, (1/87r) (d-[)R, arises from a term proportional to m-* in the DeWitt- 
Schwinger expansion, and will always be present (it is in any case uniquely determined 
if both the non-conformal and conformal pieces of (T,,),,, are to be conserved). 

From these considerations it is clear that, for any quantum state and any two- 
dimensional space-time, the renormalised stress tensor is of the form (2.19) plus 
possibly a geometrical or non-geometrical, separately conserved, finite tensor which 
vanishes when ( = 0 and when R = 0. (There can never be a logarithmic term in the 
massless renormalised stress tensor because the logarithmic divergence-which is 
independent of the quantum state-vanishes in two dimensions when m = 0; see 11.) 

Coming now to the four-dimensional case, we once again notice that the answer in 
a general Robertson-Walker space-time must consist of a common geometrical piece, 
given by part of (3.13) or (3.15), plus a geometrical or possibly non-geometrical term. 
The common geometrical piece arises (i) from the anomaly (ii) from the logarithmic 
terms. The logarithmic terms arise from the logarithmic divergence, and this is the 
same for any space-time and any state. Also, by good fortune, it is independent of tQ 
and necessarily geometrical (see Christensen 1976). Hence it may be written down 
once and for all for a general space-time. Now, contribution (i) gives the entire 
answer in the conformally coupled case, ( = 2; the logarithmic terms are absent. 
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Hence the answer will always consist of a stress tensor with the form 

where I‘,, is a non-geometrical tensor which vanishes when R = 0, and a, b, c and d 
are coefficients to be determined. (Note that Ru8Ru8 and c3)H,y cannot appear except 
in the conformal terms, as it does not in general vanish when R = 0.) The last term of 
(4 .1)  is state-dependent as well as non-geometrical. It is also generally not even 
pseudo-local as may be seen by imposing the conservation condition on the non- 
conformal part of (4.1).  The logarithmic term yields a @ = 0 component 

9 - , [ - 8 D D + 4 d 2 + 3 D 4 ]  [ 2 D - D 3 ]  
8 ( 2 D  + 0’) 

‘ ‘ ’~ov(ln R~-*);,=-c (4 .2)  

which has to cancel with a piece of r””:, for conservation. In the two special cases 
considered in 0 3 ,  one has DD = 2 d 2  and D = d D  respectively, and for these special 
cases the numerator of (4 .2)  contains a factor 2d + 0’. Thus, a cancellation occurs in 
both cases to give an accidently pseudo-local answer; in general this will not happen. 
Moreover, in the former case, it so happens that all pseudo-local tensors are 
geometrical, thus rendering the answer ( 3 . 1 3 )  ‘accidently’ geometrical. 

The important general feature to emerge from this work is that the non-conformal 
answers (and this applies also to the massive case) consist of a common geometrical 
piece, which can be written down once and for all, plus another term, generally 
non-local, consisting of an integral which in general cannot be evaluated in terms of 
known functions, because the mode solutions of the wave equation cannot generally 
be written down in closed form. In spite of this, the non-local integral will be finite, 
and should be expressible in terms of the finite difference of two mode sums, one of 
which can be evaluated explicitly. As the result is finite, the points x ” ,  x ‘  can be 
allowed to coincide before integration, thus simplifying the calculation enormously. 

One way in which this can be done is to use adiabatic regularisation for this 
‘non-point-split’ piece. Although restricted to certain special space-times (Parker and 
Fulling 1974) Robertson-Walker is included in these, and most of the ground work 
has been done. A simple application (Bunch 1978) to the conformal case immediately 
yields the answer found by Davies et a1 (1977), but in a few lines, as a finite difference 
between two non-point-split, individually divergent, mode integrals. In this easy case, 
both mode integrals are readily evaluated, but in general only the adiabatic piece to be 
subtracted can be given explicitly. 

We conclude with some remarks about the DeWitt-Schwinger series and the 
choice of vacuum state. As always in quantum mechanics it is necessary to make a 
choice of quantum state in which to evaluate operators as expectation values. There 
is, of course, no ‘right’ or ‘wrong’ state, only more or less useful ones depending on the 
physical situation to be described. The question of what quantum state most 
accurately reflects the physical contents of the real universe, or even of a simplified 
model, is a profound and difficult one which we do not attempt to answer here. 
Instead, we are here concerned with the question of regularisation and renor- 
malisation, and the problems associated with this do not depend crucially on which 
state is chosen for (TwY). The reason for this is that, if two different states are chosen, 
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they can generally be connected by a Bogolubov transformation. If we can produce a 
regularised expression for ( Twy)  in one state, then the expectation value in the other 
may be deduced from this using the Bogolubov transformation. The answer will 
contain an additional piece arising from the transformation which will generally be 
non-geometrical and finite. Of course, it may happen that if a physically unrealistic 
state is chosen, such as one which corresponds to an infinite amount of matter piling 
up on some surface of diverging blueshift (e.g. the so called Boulware vacuum around 
a black hole (Boulware 1976)) then the difference between the two (T,,) will also be 
divergent on this surface. 

Localised, non-geometrical singularities in ( TFY) arising from an unrealistic choice 
of quantum state are to be sharply distinguished from the singular terms in (T,,) 
which are subtracted in the regularisation procedure. The singular terms in the 
unrenormalised (T,") are always given by the first three terms (or two in the two- 
dimensional case) of the DeWitt-Schwinger series as written out explicitly by Chris- 
tensen (1976). These terms are independent of the choice of state; they are purely 
local, geometrical terms which are not sensitive to the global structure of the system, 
and in particular do not depend on the field boundary conditions or the choice of 
coordinate system in which the field modes simplify. This is easily understood; these 
terms represent the high-frequency, short-distance behaviour of the field, for which 
only the local geometry is important. However, the boundary conditions-which are 
closely related to the choice of quantum state-will affect the finite terms of (T,,), and 
these state-dependent terms are precisely the (generally) non-local, non-geometrical 
terms such as l l w u  in (3.36). Had we chosen a different quantum state, these terms 
would be different also. Notice, though, that we do not use the finite or higher-order 
terms of the DeWitt-Schwinger expansion, so we do not need to be specific about the 
quantum state or boundary conditions used there. In particular, they need not be the 
same as we use for (TwY). It is most important to realise that the DeWitt-Schwinger 
series is not used to generate (TwY). It is only used to calculate the divergent terms 
which are subtracted of from (7''"). 

A good concrete illustration of these remarks is the Casimir effect, in which the 
field modes are constrained by boundary conditions to be discrete. The divergent 
terms of (TWu) are unaffected, and continue to be given correctly by the first terms of 
the (geometrical) DeWitt-Schwinger series, but the effect of mode discreteness alters 
the finite term in a well known (and non-geometrical) way, and thus changes the 
renormalised ( Twy) ,  giving rise to an altered vacuum energy. 

In this paper, the choice of vacuum state is dictated by mathematical simplicity. 
The Fock space associated with the modes that we explicitly write down (such as 
(3.22)) is the most convenient choice, but the regularisation method discussed here in 
no way depends on this simplyfying choice. Some other state would do equally as 
well. Thus there is an inevitable, and required, ambiguity in the choice of vacuum. 
However, once the problems of principle concerning regularisation are solved, a 
change in choice of state is merely a computational exercise. One may then treat, 
unhindered by mathematical divergences, the difficult physical question of which 
quantum state is the most appropriate for any given physical situation. 
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